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Abstract The loci detected by association mapping

which are involved in the expression of important agro-

nomic traits in crops often explain only a small proportion

of the total genotypic variance. Here, 17 SNPs derived

from 9 candidate genes from the triacylglycerol biosyn-

thetic pathway were studied in an association analysis in a

population of 685 diverse elite rapeseed inbred lines. The

685 lines were evaluated for oil content, as well as for

glucosinolates, yield, and thousand-kernel weight in field

trials at 4 locations. We detected main effects for most of

the studied genes illustrating that genetic diversity for oil

content can be exploited by the selection of favorable

alleles. In addition to main effects, both intergenic and

intragenic epistasis was detected that contributes to a

considerable amount to the genotypic variance observed

for oil content. The proportion of explained genotypic

variance was doubled when in addition to main effects

epistasis was considered. Therefore, a knowledge-based

improvement of oil content in rapeseed should also take

such favorable epistatic interactions into account. Our

results suggest, that the observed high contribution of

epistasis may to some extent explain the missing herita-

bility in genome-wide association studies.

Introduction

Epistasis refers to interactions between alleles from two or

more genetic loci (Carlborg and Haley 2004; Phillips 2008)

and recent molecular and biochemical work identified a high

number of interactions between genes or their products

(Tong et al. 2004; St Onge et al. 2007; He et al. 2010;

Costanzo et al. 2010). Even though regulatory mechanisms

that are not based on DNA sequence, like epigenetic, post-

transcriptional, or post-translational modifications, certainly

play a role, the observed networks and the extensive inter-

play of factors should to some extent be reflected on the

genetics level. Consistent with this assumption, epistatic

interactions have been identified in animals and plants

(Montooth et al. 2003; Carlborg et al. 2006; Würschum et al.

2011a, b). Epistasis scans are, however, computationally

demanding and have therefore often been neglected.

Genome-wide association studies (GWAS) in humans

have successfully identified a large number of genetic

variants associated with complex traits and diseases.

Intriguingly, these variants generally only explain a small

proportion of the genotypic variance (Visscher 2008) which

led to the question of what may explain the remaining, or

hidden heritability (Dermitzakis and Clark 2009; Maniolo

et al. 2009; Gibson 2010). Explanations that have been

brought forward include rare variants (low-frequency

alleles), genetic heterogeneity, epigenetics, genotype-

by-environment interactions but also simply the contribution

of many thousands of variants each having only a small

effect on a complex trait. The assumption that a major part

of the genetic variance is simply hidden below the stringent
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significance thresholds of GWAS is supported by recent

findings of Yang et al. (2010) who used a genome-wide

prediction and by this approach could explain a much larger

proportion of the heritability for height. In addition, epistasis

is considered another suspect for the hidden heritability, but

detailed knowledge about the contribution of epistasis to the

heritability of complex traits is missing.

Oil content is controlled by fatty acid biosynthesis in the

plastid and by the complex assembly of triacylglycerol

(TAG) molecules in the endoplasmic reticulum (ER) (Baud

and Lepiniec 2010) (Fig. 1a). The TAG metabolism is

biochemically characterized and many of the genes in this

pathway have been identified. In addition, transcriptional

control of the involved enzymes constitutes another

important level of regulation. The precursor for de novo

fatty acid biosynthesis is acetyl-CoA which is formed by

the transphosphorylation of PEP to pyruvate catalyzed by

the plastidial pyruvate kinase (PK) and the subsequent

oxidative decarboxylation of pyruvate to acetyl-CoA and

CO2 by the pyruvate dehydrogenase complex. The first

committed step in this pathway is the formation of malo-

nyl-CoA from acetyl-CoA and bicarbonate by the acetyl-

CoA-carboxylase (ACC). This reaction requires biotin as a

cofactor and though the organization of the plant ACC is a

matter of debate, ACC from rapeseed plastids is likely to

consist of four separate subunits. A homodimer of biotin

carboxylase (BC) assembled with a homodimer of biotin

carboxyl carrier protein (BCCP), which is loosely associ-

ated to a heterotetramer of a- and b-carboxyltransferase

subunits (BCT) (Alban et al. 2000). Fatty acids are then

synthesized by a series of condensation reactions of which

the initial reaction is catalyzed by a 3-ketoacyl-ACP syn-

thase of type III (KAS3). The only enzymatic reaction

exclusively committed to TAG formation is the transfer of

a third fatty acid to the vacant position of a diacylglycerol

by diacylglycerol acetyltransferase (DGAT). WRINKLED1

encodes an AP2-transcription factor which was identified

in A. thaliana as the mutant is specifically impaired in TAG

accumulation in the seeds (Focks and Benning 1998;

Cernac and Benning 2004).

Despite our understanding of the separate steps involved

in TAG biosynthesis, attempts to modulate TAG storage in

plants have been not or only modestly successful (Cahoon

et al. 2007). This may be attributed to unknown interac-

tions between the components involved in the TAG path-

way which have so far been neglected. The TAG

metabolism thus represents an ideal model pathway to

investigate the contribution of epistatic interactions to the

heritability of complex traits.
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Fig. 1 Simplified triacylglycerol pathway and oil content QTL.

a Simplified schematic representation of the fatty acid metabolism

involving the candidate genes of this study. b Main effect QTL for oil

content, intergenic and intragenic epistasis, and linkage disequilib-

rium (LD). Enzymes: PK pyruvate kinase, PDH pyruvate dehydro-

genase, PDHK pyruvate dehydrogenase kinase, ACC acetyl-CoA

carboxylase, BC biotin carboxylase, BCCP biotin carboxyl carrier

protein, BCT biotin carboxyltransferase, KAS3 beta-ketoacyl synthase

III, DGAT diacylglycerol acetyltransferase. Transcription factor:

WRI1 WRINKLED1, ER endoplasmic reticulum
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Materials and methods

Plant materials, field experiments and molecular

markers

This study was based on 685 diverse elite rapeseed (Brassica

napus) inbred lines. All material used in this study was

provided by the breeding company Norddeutsche Pflanzen-

zucht Hans-Georg Lembke KG (NPZ, Germany). The eval-

uated traits were oil content (% of dry matter), glucosinolates

(GSL, lmol/g fat free dry matter), yield (Mg ha-1), and

thousand-kernel weight (TKW, g) (Fig. S1). The 685 geno-

types were evaluated in 1 year in routine plant breeding trials

at 4 locations except for GSL which was evaluated at 3

locations. Field trials were unreplicated and block adjust-

ments were done based on three included checks. The 685

genotypes were fingerprinted following standard protocols

with 60 simple sequence repeat (SSR) markers distributed

throughout the whole genome and with 17 SNP markers

(SNPs and InDels) based on candidate gene sequences. The

candidate genes were sequenced in a discovery set of rape-

seed lines to identify polymorphic sites. Details about the

identification of the SNPs in the candidate genes are avail-

able in the accompanying publication (GABI OIL consor-

tium, in preparation). In brief, the 17 SNP markers used in

this study are derived from nine candidate genes from the

TAG biosynthesis pathway: pyruvate kinase (PK, 2 SNPs),

pyruvate dehydrogenase (PDH, 2 SNPs), pyruvate dehydro-

genase kinase (PDHK, 2 SNPs), biotin carboxylase (BC, 1

SNP), isoform 2 of biotin-carboxy-carrier protein (BCCP, 4

SNPs) (Thelen et al. 2001), a-subunit of biotin carboxyl-

transferase (BCT, 1 SNP), diacylglycerol acetyltransferase

DGAT1 (DGAT, 2 SNPs), b-ketoacyl synthase III (KAS3, 1

SNP), and WRINKLED 1 (WRI1, 2 SNPs).

Phenotypic data analyses

The analyses were based on a two-stage approach which

has been shown to yield similar results as a one-step

analysis (Möhring and Piepho 2009). In the first step

adjusted entry mean values were estimated for each loca-

tion by adjusting for block effects using the included

checks. In the second step the adjusted entry mean values

from the first step were used to estimate variance compo-

nents using the following linear mixed model: yij = l ?

lj ? gi ? eij, where yij is the adjusted entry mean of the ith

rapeseed line at the jth location, l the intercept term, lj the

effect of the jth location, gi the genetic effect of the ith

rapeseed line, and eij the error term including the genotype-

by-location interaction effect. To determine variance

components by the restricted maximum likelihood (REML)

method both location and genotype were modeled as ran-

dom effects. Significance of variance component estimates

was tested by model comparison with likelihood ratio tests

where the halved P values were used as an approximation

(Stram and Lee 1994). Heritability (h2) on an entry-mean

basis was estimated as the ratio of genotypic to phenotypic

variance according to Melchinger et al. (1998). Further-

more, genotypes were regarded as fixed effects in the above

model to estimate adjusted entry means across locations for

all genotypes and traits. These were then used to estimate

the proportion of genotypic variance (pG) explained by the

detected QTL.

Genetic correlations were calculated according to

Cooper et al. (1996). Associations among the 685 geno-

types were analyzed by applying principal coordinate

analysis (PCoA) (Gower 1966) based on the modified

Rogers’ distances of the individuals (Wright 1978). Link-

age disequilibrium (LD) between candidate gene SNPs was

assessed by the LD measure r2 (Weir 1996) and signifi-

cance of LD was tested with Fisher’s exact tests (Hill and

Robertson 1968). LD and PCoA computations were per-

formed with the software package Plabsoft (Maurer et al.

2008).

Association mapping

The following mixed model was used for the association

mapping: yij = l ? mu ? gi ? lj ? eij, where yij is the

adjusted entry mean of the ith rapeseed line at the jth

location (estimated in the first step of the phenotypic

analysis), l the intercept term, mu the effect of uth marker

genotype, gi the genetic effect of the ith rapeseed line, lj the

effect of the jth location, and eij the residual including the

genotype-by-location interaction effect. The marker effect

mu was modeled as fixed effect whereas gi and lj were

regarded as random effects.

The K model was applied (Yu et al. 2006; Reif et al. 2011)

in which the variance of the random genetic effect was

assumed to be Var(g) = 2 Krg
2, where rg

2 refers to the

genetic variance estimated by REML and K was a

685 9 685 matrix of kinship coefficients that define the

degree of genetic covariance between all pairs of entries. We

followed the suggestion of Bernardo (1993) and calculated

the kinship coefficient Kij between inbreds i and j on the basis

of the SSR marker data as Kij = 1 ? (Sij - 1)/(1 - Tij),

where Sij is the proportion of marker loci with shared variants

between inbreds i and j, and Tij is the average probability that

a variant from one parent of inbred i and a variant from one

parent of inbred j are alike in state, given that they are not

identical by descent. The coefficient Tij was estimated sep-

arately for each trait using a REML method setting negative

kinship values between inbreds to zero (Fig. S2).

For the detection of main effects of the candidate gene

SNPs, these were fitted as fixed effects in the mixed

model and their significance was tested by a Wald F test.
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For the detection of two-way and three-way epistatic QTL,

the subordinated main (2-way epistasis scan) and main and

two-way epistatic effects (3-way epistasis scan) were

included in the model. For the two-way epistasis the model

thus extends to yij = l ? mu ? mv ? mu:mv ? gi ? lj ? eij,

where mu and mv denote the effects of the uth and vth

marker genotypes and mu:mv refers to the interaction effect

between the uth and vth marker genotypes. For the three-

way epistasis the model is extended to include the wth

marker genotype mw and the respective interactions with mu

and mv. The Bonferroni–Holm procedure (Holm 1979) was

applied to correct for multiple testing with P \ 0.01. All

mixed-model calculations were performed using the soft-

ware ASReml 2.0 (Gilmour et al. 2006).

The total proportion of genotypic variance (pG)

explained by the detected QTL was calculated by fitting all

QTL simultaneously in a linear model to obtain Radj
2 . The

ratio pG = Radj
2 /h2 yielded the proportion of genotypic

variance (Utz et al. 2000). The proportions of genotypic

variance explained by the single QTL (Tables S3, S4) were

obtained by fitting all significant QTL simultaneously in

the order of their P values with the most significant QTL as

first in the model. The obtained sums of squares were used

to calculate pG by again standardizing with the heritability.

Results

All traits showed significant genotypic variation and,

except for yield, very high heritabilities (Table S1). Prin-

cipal coordinate analysis of the 685 elite rapeseed lines

revealed that no major population structure was present in

the population (Fig. S2). For association analysis we,

therefore, used a mixed-model approach controlling only

for familial relatedness (Yu et al. 2006; Reif et al. 2011;

Würschum 2012). All lines were genotyped with SNPs

derived from nine candidate genes representing selected

members of genes from the TAG pathway (Fig. 1a). We

detected significant main effects for oil content for nearly

all genes (Figs. 1b, S3). Some main effect QTL were also

detected for glucosinolate content (GSL) and few for yield

and thousand-kernel weight (TKW). For oil content the

main effect QTL together explained 14.04 % of the

genotypic variance (Table 1). The highest proportion of

genotypic variance was found for a SNP within BCCP

which explained a considerable 5.48 % (Table S3). Low

values for the proportion of genotypic variance as observed

for some QTL can also be caused by collinearity (i.e., LD)

of markers in the simultaneous fit of all detected QTL. BC

for example is in significant LD with eight of the eleven

main effect QTL for oil content (Fig. 1). As it showed the

least significant association with the trait (Fig. S3) it was

modeled last in the final fit to obtain the pG values, possibly

contributing to the low proportion of explained genotypic

variance for this QTL. The strongest associations were

observed for BCCP, BCT, PK, and DGAT (Fig. S3).

We performed full two- and three-dimensional epistasis

scans for interactions between the candidate genes from the

TAG pathway (Figs. 1b, 2a, S4, S5). For oil content, the

detected two-way epistatic QTL explained 12.26 % of

the genotypic variance, a proportion comparable to that of

the main effect QTL (Table 1). In contrast, the combined

three-way epistatic QTL only explained a small proportion

of the genotypic variance (3.43 %).

In addition to intergenic epistasis we observed intra-

genic epistasis affecting oil content (Figs. 1b, 2b, S6). The

change in average oil content values (SD 1.12 %) between

the most and the least favorable haplotypes ranged from

0.75 % (WRI1-1:WRI1-2) to 1.67 % (BCCP-2:BCCP-3).

The proportion of genotypic variance explained by an

intragenic epistatic interaction was highest with 0.54 %

(BCCP-2:BCCP-3) which was comparable to intergenic

epistasis (average 0.56 %) and still approximately half that

of the average of the main effects (1.24 %) (Tables S3, S4).

Discussion

Allelic variation in genes from the TAG pathway

To investigate the extent of epistasis, we aimed to dissect

the genetic networks underlying phenotypic diversity of oil

content in rapeseed. In addition, glucosinolate content,

yield, and thousand-kernel weight were studied. Gluco-

sinolates are secondary metabolites implicated in plant

resistance to insects and pathogens (Sonderby et al. 2010).

All four traits were significantly correlated (Table S2)

suggesting that there could be a direct or indirect interplay

Table 1 Detection of main and epistatic QTL. Number of significant

main, two-way and three-way epistatic QTL and the proportion of the

genotypic variance (pG) explained by these QTL

Oil content GSL Yield TKW

Main effect QTL

Number 11 8 4 3

pG (%) 14.04 8.74 5.28 9.31

Two-way epistatic QTL

Number 29 11 3 1

pG (%) 12.26 4.40 1.44 0.62

Three-way epistatic QTL

Number 17 18 2 0

pG (%) 3.43 9.76 1.92 –

Combined

pG (%) 29.73 22.90 8.64 9.93
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between the factors influencing these traits. All correlations

were, however, rather small indicating that the traits are

mainly affected by independent pathways. Consistent with

their presumed role in the TAG pathway we detected sig-

nificant main effects for most candidate genes. Whereas the

few main effect QTL detected for yield and TKW are likely

due to indirect effects, the glucosinolate biosynthetic path-

way requires Acetyl-CoA and glucose. Thus, the glucosin-

olate and the TAG pathway rely on common metabolites

and our results exemplify that changes within one pathway

can affect interconnected biochemical pathways.

Analyses of mutant and transgenic plants have revealed

essential roles of the enzymes in the TAG pathway which

in our experiment showed the strongest associations with

oil content. Downregulation of BCCP, for example,

resulted in a decreased fatty acid content in mature seeds

(Thelen and Ohlrogge 2002), whereas overexpression of

DGAT, the last enzyme in the Kennedy pathway, which

has been suggested to catalyze the rate-limiting reaction in

TAG biosynthesis (Perry et al. 1999), has been shown to

increase oil content (Jako et al. 2001). Our results underline

the presence of strong natural variation in the activity of

enzyme-coding genes and the importance of the selection

of favorable alleles either for a bioengineering of plants by

transgenic approaches, or by marker-assisted selection and

the exploitation of genetic diversity.

Epistatic interactions in the TAG pathway

Together, the epistatic QTL explained a higher proportion

of the genotypic variance than the main effects which

highlights the importance of gene networks even for

quantitative traits such as oil content. Our results corrob-

orate those from Zuk et al. (2012) who used a theoretical

approach to show that the missing heritability in human

association studies may be due in significant part to genetic

interactions. In addition they show that traits with greater

biological complexity may have a higher contribution of
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Fig. 2 Inter- and intragenic epistasis contributing to oil content.

a Selected intergenic epistatic interactions, allele frequencies, average

allele substitution (a) effect on oil content (green refers to a positive

and red to a negative a-effect), relative contribution of the alleles to

the best epistatic interaction, and the mode of the interaction. The

symbols identify the different alleles from the interacting partner.

b Intragenic epistasis. The most favorable interaction is indicated in

green (colour figure online)
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epistasis than less complex traits. The observed strong

contribution of epistasis to the genotypic variance as

compared to other association studies in crops (Buckler

et al. 2009; Kump et al. 2011) may be attributed to the

different experimental designs, different genetic architec-

tures of the underlying traits, a genome-wide versus a

candidate-gene based approach, but also to the fact that our

study was based on elite germplasm in which many of the

major additive QTL may be fixed due to the selection in

breeding programs.

The detected epistatic QTL can mainly be classified as

complementary gene interactions (Figs. 2a, S5) which can

result if genes code for enzymes in the same pathway such

that the final product depends on an optimal functioning of

all involved gene products (Holland 2001). Interestingly,

we observed that the alleles with the positive effect on oil

content and the highest contribution to the most favorable

epistatic interaction were often not the most frequent

alleles, opening room for a knowledge-based improvement

of this trait. Some of the genetic interactions identified here

also reflect direct biochemical interactions (e.g., ACC

subunits BCCP and BCT) or confirm the interaction of the

transcription factor WRI1 with the promoter sequences of

PK and BCCP (Baud et al. 2009). Our approach revealed

that there is extensive crosstalk between the genes involved

in TAG biosynthesis (Fig. 3). This is not limited to single

cellular compartments or modules of genes with similar

function but rather involves interactions between the

regulatory machinery, the enzymes catalyzing steps in the

cytosol/plastid, and those in the ER.

Effect of intragenic epistasis on complex traits

Our epistasis scan also revealed the presence of intragenic

epistasis affecting oil content. A recent theory raised by

Haig (2011) suggests that the hidden heritability of com-

plex traits may be hiding in epistasis between linked SNPs.

If such intragenic epistasis, i.e., favorable haplotypes

within a gene, affects the trait, then this will go undetected

in GWAS as each locus is assessed separately. In contrast,

in pedigree studies with their much higher extent of LD,

the haplotypes can not be resolved and their effect will add

to the additive genetic variance. Our results substantiate

this theory and show that intragenic epistasis is present

even for complex traits and, more importantly, contributes

to a considerable amount to the genotypic variance.

Conclusions

In a wider context, our discoveries may be of broad rele-

vance for association approaches of complex traits. Our

results exemplify the impact of both, intergenic and intra-

genic epistasis that explained a considerable proportion of

the genotypic variance. Future association studies should,

therefore, have appropriate designs and include scans for

epistasis as one of the potential sources for the phenome-

non of hidden heritability.
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